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ABSTRACT 

 

 This thesis presents an algorithm to automatically select the positions for friction stir 

spot welding (FSSW) in a laminated rapid tooling process.  The work combines a two-

dimensional structural analysis with tool path planning to realize the overall process planning 

for the rapid tooling of a plastic injection mold.  The work starts from a two-dimensional 

cantilever beam model, defining the effective distance of a single spot joint strength, and also 

considers the effect of a single layer thickness. Secondly, an efficient medial axis 

transformation algorithm, which is suitable for the general two-dimensional boundary curves, 

has been proposed to generate the adaptive equidistance offsetting curves. In addition, 

through different working conditions of the internal and external spot welds, an adaptive 

discretization method is presented. Then, a selection principle for choosing the initial spot 

weld location and processing order with optimization to avoid redundancy is presented.  

Finally, the authors compare the advantages of this novel algorithm and traditional path 

planning algorithms with respect to strength and processing efficiency while taking into 

account structural strength. 
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CHAPTER 1 

 INTRODUCTION  

 

1.1 Overview 

 

Additive Manufacturing (AM) provides a significant increase in speed and reduction in cost, 

especially for small production runs and complex geometry products.    Although its original 

motivation was for prototyping, today Additive Manufacturing (AM) is considered a viable 

production manufacturing method [1] and many Rapid Manufacturing (RM) techniques can 

produce parts with excellent quality [2]. Currently, companies are experiencing increasing 

pressure to produce complex and diverse products in shorter product development cycles, aiming 

to achieve lower overall cost with improved quality [3].  Whereas many methods are for direct 

manufacturing of parts, rapid tooling is the processing of a mold, pattern or die directly from a 

CAD model in and additive manner.  Laminated tooling is one of the efficient methods for 

producing metallic moldssufficient strength in that short period of time. 

 

Despite the inherent advantages in the laminated tooling technology, there are two major 

concerns; layer integrity and automated process planning.  Layer deflection in metal laminated 

tooling is can be the result of insufficient bonding and can arise during post-machining. Since the 

body of the tooling is separated into various layers, there is always a need to use connections 

such as bolts, pins, and in the past electric welding processes. Unfortunately, all these methods 

will have influence on deflection and even may cause plastic deformation on some metallic 

materials. The other problem is how to achieve automatic process planning with combining post 
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CNC machining, or an integrated CNC machine and software. Although structural performance 

evaluation of laminated tooling has been discussed since the 1970s, researchers are focusedon 

finite element analysis and modular analysis validation in a post-manufacturing analysis.  The 

issue is that one also needs to consider “within” process issues during the layer based creation of 

the tooling.  This requires an iterative design, where we need to input slice geometry during the 

process planning stage. However, current commercial finite element analysis (FEA) and modular 

analysis packages are very computational expensive. In view of this, some researchers are using 

computer graphics based algorithms to show geometric weakness areas, and have successfully 

realized iterative design methods [4]. The limitation is that for engineering applications, a pure 

geometry analysis is notsufficient to analyze strength requirements. This thesis will mainly focus 

on taking into consideration strength requirements in the development of an automatic process 

planning method for layer based rapid tooling process. 

 

1.2 Motivation 

 

Although the traditional adhesive bonding between layers is simple and adaptable, the 

strength of an adhesive bond will not be sufficient for a metallic injection mold tool. Therefore, 

this work is focused on a friction stir spot welding (FSSW) based bonding technique, which is 

proposed to have sufficient strength and strong resistance to inter-layer shear force.  The problem 

is to determine the number and location of spot welds sufficient to bond layers together.   Since 

the friction welding process can be time consuming, we additionally desire a minimal number of 

such welds.  As such, we need to determine the maximum spacing allowable between 

neighboring spots.  In this work a structural model using theoretical analysis of shear forces, 
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tensile forces and ramp buckling forces coming from both manufacturing and working conditions 

will be used to determine the spacing  Additionally, due to different working conditions, at  

internal and boundary points are treated separately. Furthermore, algorithms will output specific 

optimized welding patterns for every layer automatically based on offsetting distance, material 

properties, predetermined layer thickness, and redundancy optimization. This overall goal is to 

make friction stir welded tooling a cost effective and capable approach to rapid manufacturing. 

 

1.3 Objectives 

  The objectives of this thesis are: 

 

1. Use structural modeling to determine physical process parameters  

 

Considering material properties, manufacturing and working conditions of the FSSW-based 

rapid tooling process, structural modeling will be used to generate the effective distance for 

spacing welds.   This will become a physical combining point for geometric process planning.  

 

2. Develop an efficient medial axis transformation method specific for rapid laminated 

tooling  

 

Traditional medial axis transformation methods are either lacking accuracy or cannot be 

used for the general complex planar domain. In the nature of finding the minimum thickness and 

skeleton of two dimensional geometry, this work will use a decomposition strategy to divide 
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complex geometry into three types of simple polygons. Adaptive offsetting methods will also be 

introduced to realize the generation of equidistant lines with continuity. 

 

3. Developing criteria for discretization and weld point location  

When the adaptive equidistant lines are generated, discretization becomes very important 

since our ultimate goal is to seek an optimal spot welding pattern. A largest diagonal distance 

algorithm will be used for searching the first spot points, and the distance between vertical 

pointpairs will be compared with effective distance to decide if additional spots are needed.  

 

1.4 Thesis Organization 

This thesis is divided into five chapters. The current chapter begins with an overview and 

motivation of this research.Chapter 2 contains the a literature review, with focus on friction stir 

spot welding, rapid prototyping and rapid tooling and existing processing planning 

methods.Chapter 3 reviews the existing medial axis transformation methods, and proposes a new 

method to find some critical feature points, such as three-tangent-point circle.The proposed 

process planning method is presented in Chapter 4.  

Reference: 

[1] Boonsuk, Wutthigrai, and Matthew C. Frank. "Automated fixture design for a rapid 

machining process." Rapid Prototyping Journal 15, no. 2 (2009): 111-25. 

doi:10.1108/13552540910943414. 

[2] Wong, Kaufui V., and Aldo Hernandez. "A Review of Additive Manufacturing." ISRN 

Mechanical Engineering 2012 (2012): 1-10. doi:10.5402/2012/208760. 



www.manaraa.com

5 
 

 

[3] Chua, Chee Kai., Kah Fai Leong, and Chu Sing Lim. Rapid prototyping: principles and 

applications. New Jersey: World Scientific, 2010. 

[4] Zhou, Qingnan, Julian Panetta, and Denis Zorin. "Worst-case structural analysis." ACM 

Transactions on Graphics 32, no. 4 (2013): 1. doi:10.1145/2461912.2461967. 
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CHAPTER 2: 

LITERATURE REVIEW 

 

2.1 Rapid Prototyping and Applications 

 

Rapid prototyping (RP) is a group of techniques used to quickly fabricate physical models 

and parts using three-dimensional computer-aided design (CAD). The part is generated using 

layer by layer deposition of materials.1 RP has been developed to reduce the product 

development time and to reduce the cost of manufacturing. As a result, RP offers the potential to 

revolutionize the product design and manufacturing industry. 

 

  Different types of RP methods have been developed since the 1980s. RP processes can be 

categorized in terms of the state of materials before forming the parts, such as liquids, powders, 

or solid sheets, or the way by which layers are created, such as lasers, hot rollers, or binders. 

 

  One of the early patents in RPwas issued to Charles Hull in 1986 for inventing 

stereolithography(SLA). SLA is considered the first RP technique worldwide. It is a process to 

make polymers harden under ultraviolet(UV) light and setting up the apparatus for making an 

object by layer deposition. The first object that he built was a cup 5cm tall, which took Hull 

months to fabricate it. Two years later, Hull cofounded 3D Systems Corporation, one of the 

largest and most prolific organizations operating in the 3D printing sector today.2 
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During this process, curable materials, like UVcurable materials, are fabricated layer by 

layer to form the object. The component is fabricated on a build platform submerged in a UV 

curable liquid photopolymer vat. The beam of UV light is directed by x and y scanning mirrors 

to shine on the crosssection of liquid, and the liquid exposed to it will be cured to create a layer. 

Once a layer is complete, the build platform is moved down by the thickness of one layer to 

make room for creating the next layer. This process is repeated until the final part is formed. The 

completed part is carefully removed from liquid and separated from the platform. The excess 

resin is removed by chemical bath, and the part is cured again under UV light.3 

 

Fused depositionmodeling (FDM) was developed by Scott Crump in the late 1980s, and the 

first FDM system was launched by Stratasys Inc. in the early 1990s.4 It is a layer additive 

manufacturing process that uses thermoplastic materials or metal wires to produce parts. The 

heated thermoplastic filaments are extruded from the nozzle that moves in the horizontal x-y 

plane while the build platform moves down in the z axis after one layer is built.5 FDM gains 

increasing use because of its safe and convenient fabrication process, low cost of materials, and 

availability of thermoplastics. 

 

  Laminated object manufacturing (LOM) is a rapid prototyping process that layers heat 

sensitive materials like adhesive coated paper, plastic, or metal laminates, which are successively 

bonded togetherby heated roller and cut to shape with a laser cutter. Compared with other RP 

technologies, LOM has some advantages due to peculiarity of the process,6 such as producing 

parts with large dimensions and low internal tensions that prevent distortion, shrinking, and 
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deformation. LOM also can produce wood-like properties when working with paper, but the part 

complexity is limited. 

 

Selective laser sintering (SLS), invented in the late 1980s at theThe University of Texas at 

Austin,7is anRP process that generates complex 3D parts by fusing successive layers of powder 

materials using a high power laser. The powders can be sintered directly or indirectly with a mix 

of a thermoplastic binder, depending on the properties of the powders. A beam deflection system 

makes the laser beam scan each layer according to the corresponding cross section of the 

component as calculated from a CAD model.8When a layer is completed, the bed containing the 

powders is lowered by onelayer thickness to create the next layer. This process repeated until the 

part is created.  

 

SLS can be used to process almost any type of material, including metals, thermoplastic 

polymers and elastomers, provided it is available in the form of powders that tend to fuse when 

heated. SLS also has the advantage to produce parts with high density. The sintered powders 

form the part while the unsintered powders remains in place and provide structure support. After 

the component is built, the unsintered powders will be cleaned away and may be recycled.9 

 

Laser engineered net shaping (LENS),developed at Sandia National Laboratories (see Fig. 

2.1), consists of a nozzle feeding powders to deposition surface, which creates a converging 

powder stream. The laser beam focuses on the converging point to melt the targeted surface, and 

the part is created layer by layer. After solidifying, the new part is created or existing parts are 
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repaired. The deposits were carried out under argon atmosphere. The motion control of the 

deposit could be from the CAD file or programmed manually.  

 

The LENSmethod can process more complex geometries due to the 3- or 5-axis systems 

flexible for the nozzle moves. Parts achieved with LENS usually have a net shape geometry but 

with a rough finishing. It is necessary to post-process thermally to relieve the internal stress and 

mechanically to get the desired resolution.10 

 

Fig. 2.1 The LENS process (courtesy of Welding Journal) 

 

  Three-dimensional printing (3DP), also called binder jetting, is a powder-based rapid 

prototype technology developed by the Massachusetts Institute of Technology in the 1990s.11 In 

this process, each layer starts with a thin distribution of powder spread over the surface of a 

powder bed. The process is similar to SLS, but instead of using a laser to sinter materials, an ink-
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jet head deposits a liquid thatselectively joins particles to fuse the powders together. After one 

layer is formed, the piston that supports the powder bed moves down one layer so the next 

powder layer can be spread and fused.  

 

  The 3DP system has high building speeds and is easy to handle.For metals, 3DP is 

essentially a powder metallurgy process, so porosity is a major problem. Sometimes infiltration 

is needed to decrease porosity. Infiltration refers to use a second metal, which is a lower melting 

temperature alloy to printed structure to achieve dense materials. 

 

RP systems are effective in reducing the time and cost of fabricating new products; however, 

part accuracy, surface finish, and variety of materials in most RP systems requires improvement. 

A new form of hybrid RP systems, combining material deposition (RP) and computer 

numericalcontrol (CNC) machining in a single station,was put forward to find the solution to 

those problems.12 

 

  Shape deposition manufacturing (SDM) is a hybrid process that involves depositing 

materials in a near-net shape on a substrate and then removing unwanted materials using CNC 

machining (see Fig. 2.2). This process uses microcasting, a weld-based process, to deposit the 

materials. The part is then transferred to the shaping station for machining, where the desired 

accuracy and finish areachieved. Stress relief could be used to control residual stress. The 

robotized pallet system is used to transfer parts between stations. The support material is 

embedded or deposited and shaped.13Varying different materials in the deposition process can 

change the material properties. 
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Fig. 2.2 The SDM process cycle with additive and subtractive processes14 

 

  Solvent welding freeform fabrication technique (SWIFT) is a hybrid RP process based on 

solvent welding and CNC contour machining.15 This process is applicable for thermoplastic 

materials such as polystyrene, which is solvent weldable and available in sheet form. For each 

layer, a laser printer prints a thin film of high-density polyethylene (HDPE), which is a 

thermoplastic material not soluble to acetone and therefore serves as a solvent mask. After 

masking, acetone solvent is applied to the bottom side of the sheet and pressed to the existing 

stack of sheets where solvent welding take place. Acetone breaks the van der Waal’s bonds 

between polymer chains and thus dissolves the surface of the thermoplastic sheet. The dissolved 

interfaces of each sheet blend together and form new polymer chains between sheets.  

 

  Computer-aided manufacture (CAM) of laminated engineering materials (LEMS) is a 

hybrid freeform fabrication process for fabricating laminated parts from sheet metals. Laser 

cutting is applied to materials sheet stock to cut slices. The resulting slices are extracted from the 
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stock to assemble the component by achieving intimate interlayer contact and subsequent 

sintering processes.16 

 

  The main purpose of hybrid processes is to overcome the limitations of RP systems and to 

improve the quality of the finishes products, especially in surface finish and roughness. The 

hybrid processes also are expected to improve the cutting rate and materials removal rate, thus 

reducing the process cost.14 

 

2.2 Laminated Tooling 

 

  Rapid tooling (RT) refers to a process that uses an RP model to create a mold or uses the 

RP process to fabricate a tool for a limited volume of prototypes. RT is a natural extension of RP. 

Compared toconventional tooling, RT provides a significant increase in speed and reduction in 

cost.  

 

  RT is broadly classified as soft tooling and hard tooling and also as indirect tooling and 

direct tooling. Soft tooling from silicon or epoxy resins or low melting point alloys produces 

short run and lower volume parts. Hard tooling from materials such as steel and aluminum 

creates the long run and higher volume of parts. Indirect or pattern-based tooling uses RP-made 

master patterns to produce molds and dies, while in direct tooling, the layer-by-layer additive 

process buildup the products. Direct tooling reduces the production time and the inaccuracies 

introduced by the replication stages.9 
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Rapid laminated tooling is very similar to LOM in many aspects. In the LOM process, 

sheets of materials are glued together by heated roller and cut to shape with a laser. This process 

is repeated layer by layer until the part is built, as shown in Fig. 2.3. However, instead of using 

paper or plastics with adhesive binder, sheets of metals are bolted, bonded with binder, or brazed 

together in laminated tooling. 

 

Fig. 2.3 Schematic of LOM processes17 

 

  Research has been conducted on laminated tooling since the 1980s, when Professor 

Nakagawa in Japan published the first research in this area.18 His initial work focused on the 

manufacture of blanking dies for sheet metal components through a process of stacking 

horizontal steel sheets. Bainite steel sheets and cheaper steels are used as the tool face and 

backing plates, respectively. The steel sheets were cut using lasers or a wire EDM process. A test 

on the qualities of blanked parts and tool life were deemed acceptable.  
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Soar and Dickens19 demonstrated a method of laminate tooling for the manufacture of 

pressure die-casting dies. Due to the high expense of conventional die production, such as die 

modification after manufacturing, laminated tooling is appealing for the die-casting industry. 

Aluminum alloy is one of the most applicable casting material for pressure die-casting, while 

H13 tool steel is considered the only type of steel suitable for aluminum pressure die-casting. 

Clamping the laser cut H13 steel sheets created the tooling of this process. Although laminated 

tooling can create low cost, large-scale and flexible dies, there are problems, such as molten 

materials may force themselvesbetween the laminates and constraints in choosing the thickness 

of the metal sheets. 

 

Bryden and Pashby20 used hot platen brazing to join steel sheets together in laminated steel 

tooling. In this process, the top platen is continuously heated above the liquidus temperature 

ofthe braze, such as silver-based alloys or nickel-based alloys. For braze with higher silver 

content, spraying evenly or selectively on certain areas reduces cost. Nickel-based brazing 

alloyscan be used for higher temperature applications, such as hot creep forming tools. The 

bottom platen could be heated or cooled to optimize heat flow. The braze is supplied in paste 

form or evenly sprayed to the lamination. Then, the hot platen brazing is applied to heating and 

compressing the joints between two platens. 

 

Wimpenny et al.17 presented Lastform (Large-Scale Tooling for Rapid Manufacture), a 

three-year researchprogramto develop a method of manufacturing dies for a wide range of 

aerospace and automotive processes. The research focused on three aspects: laser cutting, 
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cladding and welding techniques; combined laser sintering and lamination process; and laminate 

joining methods. The basic manufacturing methodology of laminated tooling is laminate cutting 

technique, build strategy, surface finishing methods, and choice of laminate materials. Cooling 

also is an important factor. The tool insert produced under a spiral cooling channel conforming to 

the tool surface was compared to that in the conventional drilled cooling system and without any 

cooling. The result showed that conformal cooled inserts weremore efficient. The Lastform 

program has shown the benefit of laminated tooling not only in reducingcost and production time, 

but also it has the potential in improving the process efficiency through the use of conformal 

cooling. 

 

Walczyk and Hardt21 put forward the profiled edge lamination (PEL) tooling method for 

constructing thick sheet metal forming dies. In this process, thick laminates are stacked and 

bonded using cutting processes, such as abrasive waterjet (AWJ) machining, laser machining, or 

flute edge endmilling provided by a CNC cutting trajectory. A PEL die generally has planar die 

laminations disposed in a vertical plane and stacked together side-by-side in an array. As shown 

in Fig. 2.4(a), PEL involves the assembly of an array of laminae in which each has a beveled top 

edge. The top edges of the die laminations form the top surface of the die when placed together 

in a vertically stacked array. This assembly is achieved by fixing lamina’s bottom edge and one 

adjacent side edge to a fixture. The beveling of each lamina’s top edge is achieved by cutting. 

The clamped PEL tool is shown in Fig. 2.4 (b).  

 

Compared with other cutting methods, AWJ has advantages of getting lamina with more 

consistent bevel geometry and surface finish. After cutting, the array of processes lamina is 
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clamped or bonded by applying adhesives or brazing into a rigid tool. The advantages of a PEL 

array construction over the contoured lamination are that the lattercan slide past the profiled-

edge cutting means. Thus, laminations only need to be clamped from the side, while unclamped 

laminations can be individually recut to a new die shape. 

 

 

(a) Unclamped PEL tool                                   (b) Clamped PEL tool 

Fig. 2.4 Schematics of a PEL tool22 

 

Yoo and Walczyk22 proposed an advanced cutting trajectory in AWJ for PEL. The cutting 

profiles of PEL are based on intersection curves by slicing the CAD model. The cutting 

trajectory develops suitable cutting vectors, such as cutting positions and directions that 

minimize AWJ cutting errors. The PEL’s surface quality primarily depends on the AWJ cutting 

performance. The procedures togenerate a suitable AWJ cutting trajectory are creatingcutting 

profiles, stitching profiles together, choosing cutting vectors, and cutting vector compensation. 

However, this model has its shortcomings. It requiresa method to extract exact lamination 

profiles directly from a CAD model and a cutting trajectory algorithm that improves how the top 

bevel captures the original CAD geometry and accounts for the limitations associated with AWJ 

cutting.  
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  Instead of using the build sequence of stack, bond, and cut in commercial LOM process, 

most laminated tooling processes follow the build sequence of cut, stack, and bond for each layer 

of materials. The build sequence of stack, bond, and cut has the advantage that accuracy is 

ensured without aligning each layer precisely. However, it isunfavorable for laminated tooling, 

because blind laser cutting and the removal of waste materials are difficult for metals. So firstly, 

the plates are cut into the laminations by laser, or electrical discharge machining (EDM), and the 

waste materials are removed. Then, the laminations are cleaned and stacked in horizontal or 

vertical orientation. Finally, the stacked laminations are bonded together.  

 

A variety of bonding methods have been used, such as diffusion bonding, brazing, and 

bonding with adhesives.23Mechanicalfastenersalso are a commonly used bonding method, using 

bolts and rivets to join the laminates together. However, a complete automation process is 

difficult to accomplish using those methods. Among the two building sequences, building 

laminations by stack, bond, and cut is more amenable for automation.24 

 

As a result, a process using a new layer bonding method, a unique combination of industrial 

adhesives and friction stir welding process of aluminum plates,was proposed.25 In this process, 

the adhesives were used to initially secure the aluminum plates for spot welding. Then, the 

friction stir welding could be continuously applied on the cross section of laminates. After 

bonding, a three-axis milling machine created accurate 3D shapes and surface finish.  
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2.3 Friction Stir Welding 

 

  Friction stir welding (FSW) is a relatively new solid-state joining process invented at The 

Welding Institute of UK in1991. A schematic of FSW is shown in Fig. 2.5. Initially, FSW was 

applied to aluminum alloys. A non-consumable rotating tool with a specially designed pin and 

shoulder is inserted into sheets or plates to be joined and traversed along the line of joint. The 

tool is used to heat up the work piece and move the material to produce the joint. The friction of 

the tool on the workpiece produces frictional heating, while the rotating pin causes plastic 

deformation of the workpiece material. The localized heating softens the material around the pin, 

and the combination of tool rotation and translation leads to movement of material from the front 

of the pin to the back of the pin where it is forged into a joint.26 

 

Fig. 2.5 A schematic of Friction Stir Welding26 

 

Compared with fusion welding process, any aluminum alloys could be joined with more 

uniform composition becausefiller metal is unnecessary in the joining process in FSW. 

Compared with conventional welding process, FSW is more energy efficient and environment 

friendly because it uses no gas or flux. However, FSW is a complex process involving material 
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movement and plastic deformation. Some of the most important factors affecting the FSW 

process are tool geometry, welding speed, and tool rotational speed. 

 

  Tool geometry is critical in FSW process by determining the flow of materials in the 

welding process. Tool geometry has two primary functions—localized heating and material 

flow—so the relative size of pin and shoulder are important. The shoulder should be able to 

provide confinement for the heated volume of materials. Typically, a concaved shoulder and 

threaded pin are used.  

 

Welding speed and tool rotational speed areimportant in attaining peak temperature to 

soften the material. If the rotational speed is not sufficient, then the frictional heat generated is 

not enough to plasticize the material; the metal in the weld will not diffuse and recrystallize, 

which will result in holes in the weld. If the rotational speed is too high and the weld speed is too 

small, then it will generate excessive heat, which will create fluidification cracks in the weld.27 

Thus, finding the proper parameter value for the rotational speed and the weld speed is crucial 

for a good quality weld.  
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CHAPTER 3: 

PRINCIPLE OF MEDIAL AXIS TRANSFORMATION  

 

3.1 Relationship Between the Medial Axis and the Boundary Curve 

 

The medial axis of the planar domain can be seen as the union of all centers of the 

maximum tangent circles to the boundary curve. The maximum disc is a circle completely 

contained within the closed curve and at least tangent to the two boundary curves. The medial 

axis transform (MAT) is the general term for the medial axis of a given domain and its 

corresponding radius function. In the MAT, these maximum circles are called the medial 

transformation circle M. We can divide the points on the medial axis into three categories 

according to the different number of tangent points.  

 

When the medial transformation circle and the boundary curve have two tangent points, the 

corresponding point on the medial axis is called Normal Point, as shown in Figure 3.1 (a) point 

N (or in addition to the two ends A, E outside the line, and AE on the point are normal), with 

point N corresponding to the axis of the circle.The tangent point is shown in Figure 3.1 (b). 

When the medial transformation circle and the boundary curve have three or more tangent points, 

the corresponding point on the medial axis is called the Branch Point (Figure 3.1 (a)).Points E 

and Fcorrespond to the medial transformation circle and tangent point as shown in Figure 3.1(c). 

When there is only one point on the corresponding axis it is called End Point, as shown in Figure 

3.1(a) of the A, B, C, and D points [1] [2]. 



www.manaraa.com

24 
 

 

 

Fig. 3.1 Classification of points on medial axis 

 

3.1.1 Medial axis and rotation line 

Assuming there are two free curves on the plane, C1, C2, we need to calculate the boundary 

curve of the medial axis. The union of the center, which is tangent to them and has at least two 

tangent circles, is the medial axis C. The medial transformation circle has radius r, the 

corresponding center is point P, and the corresponding two tangent points are called q1, q2, as 

shown in Figure According to the characteristics of the plane curve Frenet frame and the concept 

of accompanying curve, the Frenet frame {p, e1, e2}. By using the symmetry of the medial axis, 

it is reasonable to regard the two boundary curves and the medial axis as two pairs of 

accompanying curves. Under the condition of the known radial point r (G) of the center point P, 

S is the natural parameter of the medial axis C, and the vector of the two boundary curves at the 

tangent points q1, q2 can be expressed as: 

( )
( )

1 1 1 2 2

2 1 1 2 2

r r s x e x e
r r s x e x e
= + +
= + −

（3.1） 
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Where x1, x2 are the relative coordinate of tangent point q1 in frame {p, e1, e2}. 

Taking the differential formula (3.1) on both sides and the use of plane curve Frenet 

formula, you can get the boundary curve of the tangent vector, with the equation: 

( ) ( )
( ) ( )

1 1 2 1 2 1 2

2 1 2 1 2 1 2

1
1

r x kx e x kx e
r x kx e x kx e

′ ′= + − + +
′ ′= + + + −





（3.2） 

Where k is the curvature of the medial axis C at point P, , and , which are the 

derivatives of x1 and x2, respectively. 

 

Fig. 3.2 Medial axis and rotation line 

As shown in Figure 3.2, if the medial axis C as a static space instantaneous line, C01, C02 on 

the line C do pure rolling with tangent point P, C01, and C02 are completely symmetrical with e1. 

Assuming that the tangent points q1 and q2 are fixed on the C01 and C02, the trajectory curves C1 

and C2, which are caused by q1 and q2 rolled up along the C01 and C02 in the static space, are 

called the rotation lines. Becauseq1 and q2 are fixed on C01 and C02; curves C, C01, and C02 are 

tangent at point P and have the same Frenet frame. With Cesaro fixed condition, it could be 

referred to as: 
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1 0 2

2 0 1

1x k x
x k x
′ = − 

′ = − （3.3） 

Where k0 is for the curvature of the instantaneous line C01, C02 at the P. 

Substituting equation (3.3) into equation (3.2) yields: 

( ) ( )
( ) ( )

1 0 2 1 0 1 2

2 0 2 1 0 1 2

r k k x e k k x e
r k k x e k k x e
= − − −
= + + +





（3.4） 

The aforementioned geometric model uses the relative coordinates and the differential 

invariants k and k0 to associate the medial axis, the boundary curve with the moving 

instantaneous line. The boundary curve can be thought of as a rotating line formed by pure 

rolling on the medial axis C (i.e., the fixed instantaneous line). From the knowledge of 

differential geometry, it can be seen that the tangent lines of the cyclone lines C1 and C2 at q1 and 

q2 must be orthogonal to the vectors q1p and q2p, respectively. So q1, q2 in this moment can be 

seen doing the rotary motion at point P of medial axisto meet the requirements of the medial axis 

transformation. 

Let 

1 1 1 2 2 2 1 1 2 2P x e x e P x e x e= + = −、 （3.5） 

Now we have: 

1 1

2 2

0
0

r P
r P
• = 

• = 





（3.6） 

Substituting equations (3.2) and (3.5) into equation (3.6), we could have: 

1 1 1 2 2 0x x x x x′ ′+ + =
（3.7） 

Because , equation (3.7) could be simplified as: 
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( )1 / cosr x r θ′ = − =
（3.8） 

Where the  is the angle between q1p and e1. 

 

For a given boundary curve C1 (U1), C2 (U2), where U1 and U2 are the parameter of the 

curve, in order to establish the relationship between the point Pon the medial axis and the tangent 

point q1 and q2 on the corresponding boundary curve, it is first necessary to determine the 

parametric relationship between them. Let the vector of the boundary curves C1 and C2 be: 

( ) ( )
( ) ( )

1 1 1

2 2 2

R u r s
R u r s

=
=

（3.9） 

We deviate equation (3.9) and substitute equation (3.4) into it: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 0 2 1 0 1 2

2 2 2 0 2 1 0 1 2

R d u r ds k k x dse k k x dse
R d u r ds k k x dse k k x dse

= = − − − 
= = + + + 









（3.10） 

The differential relationship between the boundary curves C1 and C2 and the axis C 

parameter can be solved by equation (3.10): 

( )

( )

01

1 2

02

2 2

k k rdu
ds R

k k rdu
ds R

− 
= 




+ = 






（3.11） 

Here, is the radius of the medial transformation circle. In equation (3.11), the 

curvature k0, k1 becomes the key to solve the problem. Using the Euler–Savary formula, the 

curvature expression of the boundary curves C1, C2 at point q1 and q2 can be obtained as follows: 
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( )

( )

1 2
0

2 2
0

1 sin

1 sin

k
r k k r

k
r k k r

θ

θ

= − + − 

= −
− （3.12） 

Solving the equation (3.12), we could get k0 and K as follows: 

( )
( )( )

1 2
0

1 2

sin 2
2 1 1

r k k
k

r k r k r
θ + −  =
+ −

（3.13） 

( )
( )( )

1 2

1 2

sin
2 1 1

k k
k

k r k r
θ +

=
+ −

（3.14） 

This shows the relationship between the boundary curve and the curvature of the medial 

axis. 

 

3.1.2 Moving frame for medial axis and boundary curve 

The abovementioned method of determining the relationship between the boundary curve 

and the medial axis is based on the concept of the rotation line, which treats the points on the 

boundary curve as fixed points on the rotation lines C01 and C02, and studies the relationship 

between parameters and curvature when C01 and C02 are purely rolling on the central axis C. If 

we establish the Frenet frame {p, e1e2} of the central axis C at the point P and the Frenet frame 

{q1, } of the curves C1 and C2 are set at q1 and q2, respectively, with {q2, }, as 

shown in Figure 3.3. Furthermore, s, s1, and s2 are the natural parameters of C, C1, and C2, 

respectively. 
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Fig. 3.3 The Frenet frames of medial and boundary curves 

As can be seen from Figure 3.3, the boundary curve and the medial axis of the moving 

frame has the following mapping relationship: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1 1 2

1
2 1 2

sin cos

cos sin

e e e a

e e e b

θ θ

θ θ

= − 


= + （3.15） 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
1 1 2

2
2 1 2

sin cos

cos sin

e e e a

e e e b

θ θ

θ θ

= +

= − +
（3.16) 

Where is the angle of q1p or q2p and e1. 

According to the principle of the accompanying curve in differential geometry, the two 

boundary curves and the medial axis can be regarded as two pairs of matching curves, 

respectively. Then the boundary curve can be expressed as follows: 

( )

( )

1
1 2

2
2 2

r r re

r r re

= +

= − （3.17） 

Where r is the radius of the medial transformation circle and r is the vector of point Pon 

medial axis. r1 and r2 are the vector of q1 and q2 points on the boundary curve, respectively. 
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From the equation (3.15) - (3.17), we can see the relationship between the central axis and the 

boundary curve. In order to establish the relationship between the parameters of the medial axis 

and the boundary curves, the two sides of the equation (3.17) are differentiated at the same time, 

as follows: 

( ) ( )

( ) ( )

1 1
1 2 2

2 2
2 2 2

dr dr e dr rde

dr dr e dr rde

= + + 


= − − （3.18） 

Using the Frenet frame formula of the planar domain, equation (3.18) can be further 

simplified to: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
1 1 1 1 2

2 2
1 2 2 1 2

1

1

e rk ds e ds e dr a

e rk ds e ds e dr b

+ = + 


− = − （3.19） 

Where k1 and k2 are the curvatures of the boundary curves C1 and C2 at point q1 and q2. By 

making dot product of ,  to both sides of equation (3.19) (a) and (b), we could get as 

follows: 

( )

( )

1

1

2

2

sin
1
sin
1

ds
ds rk

ds
ds rk

θ

θ


= + 


= − （3.20） 

From equation (3.20) can be obtained between the natural parameters of the medial axis and 

the boundary curve, the scale relationship could be revealed. When we dot product ,  at 

both ends of (a) and (b), we obtain the differential equation that r and should satisfy, which is 

equation (3.8). 
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Taking differential of equation (3.15), (a), (b) on both sides at the same time, we could get 

as follows: 

( )

( )

1
1 1 1 2 2

2
1 1 1 2 2

sin cos cos sin

sin cos cos sin

de de e d de e d

de de e d de e d

θ θ θ θ θ θ

θ θ θ θ θ θ

= + − + 


= + + − （3.21） 

Using the Frenet frame formula of the planar domain, equation (3.21) can be further 

reduced to: 

1 1

2 2

k ds kds d
k ds kds d

θ
θ

= + 
= − （3.22） 

By substituting equation (3.20) into equation(3.22), we can get the relationship between the 

curvature k of the medial axis at the point Pand the curvature k1, k2 of the boundary curve at the 

corresponding tangent points, which is equation (3.14). 

 

From the equations (3.13) and (3.14), we can see that when (1 + k1r) (1 –k2r) = 0, the two 

equations are meaningless; when the radius of the medial transformation circle is equal to the 

radius of curvature a point on the boundary curve, it equals to an endpoint on the central axis. 

Thus, this condition can be used as an end condition for the following recursive algorithm. 

 

3.1.3 Tracing algorithm of medial axis transformation 

In order to construct the tracking algorithm for solving the medial axis, we can obtain the 

coordinates of the point Pon medial axis and the corresponding tangent point q1 and q2 by 

iteration or other methods. Then, , e1 is perpendicular to e2, and follows the 

right hand system, e3 perpendicular to the paper outwards. the 

curvature of the medial axis at point Pcan be calculated by equation (3.14). According to the 
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Taylor expansion formula and the Frenet formula of the planar domain, if the third order small 

number is omitted, the vector equation of the next point p* adjacent to point Pis: 

( ) 2
* 1 2

1
2

r r s se k s eρ = + ∆ + ∆
（3.23） 

Where s is the central axis at point P along the e1 direction of the arc derivative. Figure 3.4 

shows that the Frenet frame at point p* can be written as: 

*
1 1 2
*
2 1 2

cos sin
sin cos

e e e
e e e

δ δ
δ δ

= +


= − + （3.24） 

Where is the radius of curvature circle at point P on the medial axis. 

 

According to equation (3.11) or equation (3.20), we can get the parameters U1, U2,or S1, 

S2 in the curves C1 and C2, and then we can get corresponding parameters for all the points 

under the boundary curve: 

*
1 1 1
*
2 2 2

u u u
u u u

= + ∆


= + ∆ （3.25） 

Substituting parameters of ,  into the curve C1, C2 equation, you can get the tangent 

points corresponding with p* points,  and . Using the curvature equation (3.26), we can 

obtain the new parameters and corresponding curvature on the boundary curve, as follows: 

* 2

2

1, 2i i
i

i

r r
k i

r
×

= =
 



（3.26） 

Thus, we can get the curvature of the next point p* to obtain the next point p* on the medial 

axis, and the coordinates of the new tangent points  and  corresponding to p* and the new 
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Frenet frame. Followed by repeated recursion, the medial axis and medial transformation circle 

could be achieved.  

 

 

Fig. 3.4Tracking algorithm of the medial axis 

 

3.2 Bifurcation and Endpoint Processing 

 

  As mentioned earlier, for the connection field in the Euclidean plane the medial axis also 

includes the normal point, the bifurcation point, and the end point, and the calculation of the 

bifurcation point is the bottleneck of the precise calculation of the medial axis. Choi et 

al.haveused the idea of regional decomposition to decompose complex regions into simple 

regions that do not contain bifurcation points, which avoids dealing with bifurcation points; 

however, the specific operations are complicated and need to be iterated again to limit the idea to 

be widely used [3]. 
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In this paper, the bifurcation point is determined by the following method. According to the 

previous axis tracking algorithm to determine the next point on the medial axis, we need to 

calculate the distance from point P to points on the curve. If the distance is greater than or equal 

to the radius of the center circle, it means that no bifurcation point has been encountered and the 

previous tracking algorithm continues to be executed. Otherwise, if the bifurcation point is 

encountered, the current P point and the corresponding tangent point could be recorded. In the 

calculation of distance, to speed up the iterative process, the tracked parts do not need calculation. 

Ramanathanet al. suggested that if the two boundary curves have a common vertex, when the 

medial axis transformation is made from the bifurcation point, the process does not need to judge 

the distance because there will be no bifurcation points [4].  

 

As shown in Figure 3.2, the point q3 is a new tangent point, where the point P is the 

bifurcation point. If we use q3 to replace the original q2 point, and the corresponding frame and 

curve parameters are updated, then we continue the previous tracking algorithm, C21, which is 

the medial axis in this branch, so that it could be obtained. In this way, making q3 instead the 

original q1, we can find another branch of medial axis, which is C23. If there are multiple tangent 

points at a time, the processing method is similar. 

 

Another special point is the endpoint, where the medial transformation circle has only one 

tangent point with the boundary curve. The circle is also the curvature circle of tangent point, as 

shown in Figure 3.2, point p1. For this kind of point, equations (3.13 and 3.14) fail, which can be 

used as an end condition of the tracking algorithm. The same kind of point can also be used as 

the starting point of the algorithm, and we can take derivative of curvature for the boundary 
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curve. When the derivative value is zero and the curvature value is positive, the extremum of the 

curvature is the endpoint. At this time, the two tangent points coincide. For the two equations to 

be valid, the radius r of the center circle should be increased by an infinitely small  

 

  Thus, we have a solution to deal with a variety of points on the medial axis and the 

tracking algorithm pseudo-code is as follows: 

Tracing Algorithm (Given (p, q1, q2, )) 

Do { 

   Calculate the unit vector e1 and e2:  

   The radius of medial transform circle r:  

   The angel between q1p or q2p and e1:  

   Calculate the curvature k at the point P of the medial axis and the moving instantaneous 

line using equation (3.14) 

   Use equation (3.23) to calculate the coordinates of the next point p*; 

   Update the corresponding Frenet frame according to equation (3.24); 

   The parameter increment of the boundary curve is obtained by the equation (3.11) or 

(3.20), as    

U1, U2 or S1, S2 

 

 

   The coordinates of the tangent points,  are updated according to the known curve  

parameter equation; 
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  Using equation (3.26), we can calculate the new tangent points, , and corresponding 

curvatures k1 and k2 on the boundary curve to calculate the distance , and to calculatethe 

minimum distance dmin, and  judge whether it is less than r; 

  If (dmin<r), record p, q3, and q2; 

  p=p*, q1= , q2= ; 

} 

  While (1+rk1!=0 & 1 – rk2!=0) 

Now have p, q3, and q2; Repeat the above tracking algorithm to calculate the rest branch; 

END 

 

3.3 The Exact Solution for Medial Axis Transformation  

3.3.1 Two tangent points circle exact solution 

The above tracking algorithm can be used to calculate the medial axis of the boundary curve 

on planar domain, but the accuracy of the tracking algorithm largely depends on the size of the 

arc length of the selected axis. If S is too small, it affects the program running time; on the 

other hand, if S is too large, the calculation accuracy cannot guarantee to meet the needs of 

engineering applications. 

 

In view of the above problem, this section uses a two tangent point circle algorithm, where 

only the case where the medial transformation circle and the boundary curves C1 and C2 are 

tangent to two points. In order to make the algorithm more efficient, we can refer to the result of 

the tracking algorithm discussed above as the initial condition of the two tangent point circle 

algorithm. The point Pon medial axis, the boundary curves C1 and C2, and the corresponding 
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tangent points q1 (u1) and q2 (u2) are obtained by using the tracking algorithm. e1 and e2 are the 

unit tangent and the unit normal vectors of the medial axis MA at point P[5]. 

 

Fig. 3.5. Two tangent points circle algorithm 

 

The minimum distance (d1 and d2) between point Pand the boundary curves C1 and C2 can 

be calculated using the direct iterative method [6], given q1 and q2 as the initial values. If d1 is 

greater than d2, let point Pgo along the point e2 direction to move a small step size . Instead, let 

point p move a slight step in the opposite direction of e2. Properly reduce the size of  until d1 

and d2 are equal, which means the position of the center of the medial transform circle has been 

obtained. As shown in Figure 3.5, the pseudocode of this algorithm is given below: 

Two Tangent Points Circle (p, u1,u2) 

Calculate the unit vector e1 and e2; 

Calculate the minimum distance d1 and d2 of the point p and the boundary curves C1 and C2 

 d1=Min Dis Between Point And Curve(p, u1); 

 d2=Min Dis Between Point And Curve(p, u2); 

Do { 
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    If (d1< d2) 

    Do { 

    Cut stepdown: ; 

    Update p location: p=p-  

    New distance; 

    d1=Min Dis Between Point And Curve(p, u1); 

    d2=Min Dis Between Point And Curve(p, u2); 

} while (d1< d2) 

Else { 

     Move to opposite direction, update p location: ; p=p+  

     Update distance: 

     d1=Min Dis Between Point And Curve(p, u1); 

     d2=Min Dis Between Point And Curve(p, u2); 

} 

}while ( <distance tolerance) 

END 

 

3.3.2 Three tangent points exact solution 

The so-called three tangent points circle algorithm, that is, the medial transformation circle 

and the boundary curve tangent to three points at the situation, uses the abovementioned process 

to determine the bifurcation point: in the tracking algorithm or two tangent points circle 

algorithm. The minimum distance between the current point and the boundary curve should be 

calculated and checked whether it is less than the radius of the current medial transformation 
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circle. If this distance is greater than the current radius, indicating that no bifurcation points have 

been encountered, the tracking algorithm and the two tangent points circle algorithm are 

continued. On the other hand, if the minimum distance is less than the current radius, this means 

current point Phas passed the bifurcation point, and return to point P can get this bifurcation 

point. Based on the two tangent points circle algorithm, the pseudocode is as follows: 

 

Fig. 3.6 Three tangent points circle algorithm 

 

Three Tangent Points Circles (p, u1, u2, u3) 

Calculate the unit vector e1 and e2; 

Calculate the minimum distance d1 and d3 of the point p and the boundary curves C1 and C2 

d1=Min Dis Between Point And Curve(p, u1); 

d3=Min Dis Between Point And Curve(p, u3); 

Do { 

    If (d1< d3) 

    Do { 
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    Cut stepdown: ; 

    Update p location: p=p+  

    New distance; 

    d1= Two Tangent Points Circle(p, u1, u2); 

    d3=Min Dis Between Point And Curve(p, u3); 

} while (d1< d3) 

Else { 

     Move to opposite direction, update p location: ; p=p –  

     Update distance: 

  d1=Two Tangent Points Circle(p, u1, u2); 

     d3=Min Dis Between Point And Curve(p, u3); 

} 

}while ( >distance tolerance) 

END 

 

3.3.3 Overall Algorithm for Exact Medial Axis Transformation Solution 

 

Now summarizing the above algorithms, they can merge into a coherent program. The first 

step is to find curvature extreme points of boundary curves, that is, the derivative value of 

curvature is zero and the curvature itself is positive; actually, it is the endpoint. As discussed 

above, this point can be used as a starting point for the program, and we store all of these 

endpoints in a starting endpoint table. Then, from an endpoint, we run the tracking algorithm and 

the two tangent points circle algorithm until another endpoint appears. In this process, the 
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minimum distance between the current point Pon the medial axis and the discrete points of the 

boundary curve should be calculated. If the minimum distance is greater than the current radius 

of the medial transformation circle, this indicates the bifurcation point has not yet reached, and 

we continue to run the algorithm. If the minimum distance is less than the radius of current 

medial transformation circle, this indicates the bifurcation point has been encountered. In this 

case, the program is transferred to the three tangent points circle algorithm to get the bifurcation 

point p*. In addition, add point p*, q3, and q2 to the starting endpoint table, and use the new 

tangent point q3 instead of the current tangent point q2. Then, continue to track and the two 

tangent points circle algorithm; after each tracking cycle, the corresponding starting point must 

be removed from the table. The main program stops until all endpoints are run out, i.e., when the 

endpoint table is empty. Here is the pseudocode of the main program: 

 

Begin Main Algorithm 

Starting endpoints table (the derivative value of curvature is zero and the curvature itself is 

positive) 

Do { 

   Tracking algorithm; 

   Two tangent points circle algorithm; \\ exact location of medial axis points 

   Calculate minimum distance between the current point p on the medial axis and the discrete    

points of the boundary curve, noted as dmin 

If (dmin>r) continue algorithm; 

   Else { 

   Run three points circle algorithm to get medial axis point p* and tangent points q1, q2 and q3; 
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   Adding p*, q3, and q2 to starting endpoints table, 

   Using p*, q3 and q1 as the current initial end points; 

   Update unit vector e1 and e2; 

   } 

}while (starting table is not empty) 

END 

 

3.4 The Equidistant Operation 

Offsettingthe curve as an important geometric operation in CAD/CAM system has direct 

application in tool path planning of CNC machining. It has also been applied in robot path 

planning, solid modeling, computer graphics, geomorphology, art pattern design, etc. We could 

not deny that the equidistant operation is a very difficult geometric operation, however, 

especially for nontraditional polygons and quadratic curves.  

 

According to differential geometry concept of the equidistant line [6], we can see that for a 

given curve C: r (t) = (x (t), y (t)), with offsetting distance d, the equidistant line formula is: 

 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2d

y t x t
r r t dn t x t d i y t d j

x y x y

   ′ ′
= + = − ±   

′ ′ ′ ′ +   +    


（3.27） 

 

Where n(t) is the normal vector of the curve at a point, t is the parameter of the curve, and d 

is the distance to be offset. 
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The equidistant line may produce local or global self-intersection when the distance d 

(between the equidistant line and the original line) is large, or if the self-gap by detoured original 

line is less than 2d. 

 

Fig. 3.7. Untrimmed offset curve 

 

As shown in Figure 3.7, this phenomenon in the practical application of the equidistant line 

will result in serious consequences; dealing with these local or overall self-intersections one by 

one is very time-consuming. Choi etal.have given the mathematical theory of equidistant line of 

planar curve from the medial axis transformation perspective. The geometrical relationship 

between equidistant line and medial axis has been studied, and the equidistant line could be 

obtained via MAT [7]. He also classifies the points on the curve according to the local geometric 

properties and uses the regional decomposition. To ensure the continuity of the equidistant line, 

he introduced the concept of a single connected region to calculate the equidistant line. This 

method is simple but the process is relatively complicated. The author here suggested that, after 

running the tracking algorithm to obtain the medial axis, we could have the union of medial 

transformation circle of every boundary curve point. Is it possible to reverse the operation of the 

MAT to get the boundary curve, that is, the envelope line of medial transformation circles?  
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Let the medial axis equation ber(t)=(x(t), y(t)), where r is the radius of current medial 

transformation circle at point (x(t), y(t)).Then, we have the equation for medial transformation 

circles: 

 

( ) ( )R r t re ϕ= +  (3.28) 

And  

Take derivatives on both side of (3.28) with t and  

( ) ( )R r t re ϕ= +
（3.28） 

( )iR x i y j r e ϕ′ ′ ′= + +
（3.29） 

Where  

 

  Equations (3.19) and (3.20) are substituted into the following envelope conditions, i.e., the 

curve family has the same normal vector as the envelope line at the tangent point: 

( )1R reφ ϕ=
（3.30） 

( ) 0ik R Rφ× =

（3.31） 

cos sin 0x y rϕ ϕ′ ′ ′+ + = （3.32） 

( ) 2 2cos /r x yϕ α ′ ′ ′− = − +
（3.33） 

( )2 2arccos /r x yϕ α π ′ ′ ′= + ± +
（3.34） 

Then substituting equation (3.34) into equation (3.28), we find: 
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（3.35） 

If the arc length s is used as parameter and the formula (3.8) is taken into account, the 

equation (3.35) can be reduced to: 

( ) ( )R r s re α θ= + ±
（3.36） 

Where,  is the normal vector of the boundary curve 

at the tangent point. is the angel between e1 and i. It can be seen from the equation that the 

tangent point of the medial transformation circle and the boundary line is exactly the element of 

the envelope curve, and these points are called feature points in the differential geometry [8].  

 

According to the envelope conditions, we can see that at this point, the medial 

transformation circle and the boundary curve have a common normal vector, so that the equation 

of the boundary curve can be introduced as follows: 

( ) ( ) ( )dR r s r d e α θ= + − ±
（3.37） 

Here, d is the offsetting distance, if (r – d)<0, we could let r=d to avoid self-intersection.  
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Abstract:  

 

This paper presents an algorithm to automatically select the positions for friction stir spot 

welding (FSSW) in a laminated rapid tooling process.  The work combinesa two-dimensional 

structural analysis with tool path planning to realize the overall process planning for the rapid 

tooling of a plastic injection mold.  The work starts from a two-dimensional cantilever beam 

model, defining the effective distance of a single spot joint strength, and also considers the effect 

of a single layer thickness. Secondly, an efficient medial axis transformation algorithm, which is 

suitable for the general two-dimensional boundary curves, has been proposed to generate the 

adaptive equidistance offsetting curves. In addition, through different working conditions of the 

internal and external spot welds, an adaptive discretization method is presented. Then, a selection 

principle for choosing the initial spot weld location and processing order with optimization to 

avoid redundancy is presented.Finally, the authors compare the advantages of this novel 
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algorithm and traditional path planning algorithms with respect to strength and processing 

efficiency while taking into account structural strength. 

 

Keywords: Friction Stir Spot Welding, Rapid Tooling, Structural Modeling, Medial Axis 

Transformation, Process Planning  

 

1. Introduction 

 

Nowadays, with rapid development of additive manufacturing, rapid tooling processeshave 

stepped into the vision of both researchers and industrial users [1]. Laminated rapid tooling 

belongs to the laminated object manufacturing (LOM) conceptual framework. Previous studies 

are heavily based on non-metallic materials, such as paper and plastics, and layers are bonded 

with adhesives [2]. There are several attempts to combine laser based welding technique into 

rapid tooling system [3]. But the there are two severe pending problems, one is lacking of 

strength for non-metallic materials. Usually, users are just using non-metallic mold as the female 

mold or just showing the conceptual design [4]. The other problem is large heat influx during the 

laser based welding process, like cycling heat treatment process, which will cause inaccurate 

geometry presentation and micro-structural problem (e.g. internal voids and large dendrites 

formation) [5].  

 

The Rapid Prototyping and Rapid Manufacturing Lab in Iowa State University, has 

proposed and introduced a new hybrid additive/subtractive rapid tooling system [6]. This new 

system has combined friction stir welding and post CNC machine seamlessly, which has brought 
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the hybrid rapid tooling system into a different direction. In the proposed process, aluminum 

plates are first pressed onto a stack with glue and bonded. Both the adhesive and toe clamps 

serve as a combined temporary “clamp” to hold the plates together for spot welding. After gluing, 

the first step is to weld the boundary sacrificial wall, then proceed to weld down the interior 

cross-sectional loops of material for each layer (as shown in Fig. 1) [6]. Since this system could 

utilize existing CNC machines, existing tooling planning software and operation system, so it is 

promising to become an alternative solution to replace the laser welding based rapid tooling. For 

industrial application process, the automated process planning for this rapid tooling method is 

still uninvestigated. In this paper, a fully automatic process planning algorithm to take structural 

analysis into consideration will be developed. 

 

 

 

 

Figure 1. Schematic diagram of friction stir welding based manufacturing system [6] 
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  For mainstream process planning or tool path planning methods in additive manufacturing 

area, there are several typical examples. Karunakaran et al. [7] used CNC machining to face mill 

each layer built by metal inert gas welding to significantly improve the dimensional accuracy of 

parts. Xiong et al. [8] incorporated aplasma torch into a traditional machine tool, realizing 

plasmawelding and CNC finish machining on the same platform. Neither of them has considered 

strength and geometry requirements together. In nature of rapid manufacturing, specifically in 

the process planning stage, the mode of separating consideration of geometry and structural 

strength is not favorable. Some investigators have used modular analysis and finite element 

analysis (FEA) to evaluate the strength performance of additive manufactured parts, but these 

analysis are for post-manufacturing and global analysis. The layer based and pre-manufacturing 

(process planning stage) analysis, to author’s knowledge, which could consider geometry and 

strength requirements simultaneously, has not been reported yet.  

 

Medial axis transformation as a kind of pure geometry algorithm has been proposed by 

Blum et al. 1967, to estimate the minimum thickness of a planar domain [9]. It is well established 

to extract skeletons from 2D and 3D geometry which approximates the shape with a set of 

tangent spheres, and has already been applied into tool selection in high speed machining process. 

Unfortunately, the approximation algorithm and large computational load have become the 

biggest obstacles for its further application.  

 

Hereon, this paper is intended to improve the traditional process planning method with an 

efficient medial axis transformation algorithm. A novel decomposition strategy which could 
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largely reduce computation load with enough accuracy has been introduced firstly. Additionally, 

considering the cantilever beam model as parameters of step over distance, a fully automated 

friction stir spot welding process planning algorithm has been developed and verified. 

 

2. Methodology 

As illustrated in Figure 2, this paper will present a method to determine spot weld locations 

of two metal plates in the aforementioned layer based tooling approach.  The method involves 

selecting spot welds for both the outer wall and interior slice chains (Figure 2a).   Whereas the 

outer walls are sacrificial, the previous alternating spot welding approach is used.  In this manner, 

spot weld alternate from corners to wall midpoints.   This paper, however, further addresses, the 

spot welds in the tooling cross sections which are further broken into boundary points, medial 

axis points and interior points (Figure 2b).  The work of this paper will address individually, the 

generation of and selection of points along these boundaries culminating in a final section of 

required spot welds, as envisioned in Figure 2c.  The following section, will begin with a 

structural model of the critical points along the slice boundaries.   

 

 

Figure 2. Friction Stir Spot Welding points definition and selections 
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2.1 Structural modeling 

 

Hereon, we are considering to use a simplified cantilever beam with single free end to 

describe the physical conditions for this process, as shown in Fig. 3. We have also classified 

acting forces into three stages, manufacturing stage I (FSSW), II (CNC Machining) and working 

stage (Injection and de-molding).  

 

 

Figure 3. Structural modelling and effective distance 

 

For manufacturing stage I, the shear force and pressure forces are two main factors in this 

stage. For rapid tooling process, the estimated shear force could reach 3KN for a single FSSW 

spot. Since the shear forces could cause serious damages on tooling structure. We have defined 

an “in-plate” fixture technique to overcome the shear force during the first several spots, as 

shown in the Fig.3 (a). Additionally, this self-fixturing structure could also resist the overall part 
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distortion induced by heat influx and enhance the general stiffness during the manufacturing 

stage (I and II). And it could be removed when the mold core islands are finished, as the support 

structures. In order to avoid overlap the spot welding heat affect zone, we use a four side 

recentagular box outside those mold core islands as the boundary walls. There will be four spot 

welds in each layer which will be either in the corners of the boundary wall or in the mid span of 

the boundary walls. The location of the spot welds is alternated for subsequent layers as in Fig. 3 

(a).   

 

If the shear forces could be mainly resisted by the self-fixturing structure both in stage I and 

II, then as an additive/subtractive process, the as-received structure must survive after the 

machining process, that is, to resist the cutting force. The cutting forces are depended on main 

factors, such as materials properties, tool parameters and feed speed. Here, we use the following 

formulas to estimate cutting force in our rapid tooling system, with a range from several to tens 

newton. As shown in the Fig. 3 (b), the cutting forces and other arbitrary acting forces are 

normally decomposed into three directions, X axis (compress force), Y axis (bending force), Z 

axis (shear force). X axis and Z axis will be decided to meet the minimum number of spot 

welding sets. Y axis forces will be used to analysis a new concept, which we have firstly 

introduced here, “the safety affected zone”. We are using this zone to decide the maximum 

distance of two neighboring spots. As our optimization goal is trying to get less spots but enough 

structure stiffness to resist forces from both manufacturing and working conditions. Here, we 

have used a ramped bulking force distribution to stimulate the worst case scenario comparing to 

actual physical situation. Notably, as the friction existing between layers, the interlaminar 
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friction forces should also be considered. So we have the following equations based on materials 

mechanics: 

 

  (1)          (2) 

By given the maximum deflection , we could easily get the effective distance, which is the 

largest safe distance for two adjunct spot welds. The t here, is the layer thickness. To be 

simplified, a “lumped” frictional force is assumed to act at x = 2L/3, which is the centroid for the 

ramped bulking normal force.  

 

For the plastic injection molding process, we need to consider the bulking force caused by 

injection and demolding process. The injection force could be regarded as another kind of 

bending forces acting on the cantilever beam. But the demolding is usually larger than cutting 

force in a certain level, and could be estimated by using following equations: 

 
 

    (3) 
 
Where:  
 

 = Ejection Force  

 = coefficient of thermal expansion of moulding material  

= melting temperature of moulding material  

 = ejection temperature of moulding material  

D = diameter of core  

 = Young’s Modulus of moulding material at  
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 = Area of contact between core and molding in direction of ejection  

μ = coefficient of friction between molding material and core  

t = thickness of molding  

γ = Poisson’s ratio for molding material 

 

2.2 Medial Axis Transformation  

 

Medial Axis Transformation, or skeletonization, has been widely studied over the past few 

decades in the computer vision field. Lee [10] proposed a divide-and-conquer approach that 

constructs the generalized Voronoi diagram for simple polygons. The medial axis transformation 

can be easily extracted by removing the Voronoi edges connecting to concave vertices of the 

polygon. Srinivasan et al. [11] extends Lee’s algorithm to computing a generalized Voronoi 

diagram for polygons with holes. Choi [12] presents an MAT approximation algorithm in the 

planar domain via domain decomposition. Kao [13] proposes a method that directly associates 

boundary points to the corresponding proximity metrics based on Lee’s and Srinivisan’s 

methodology. For “three-tangent-points-circle” and “two-tangent-points-circle” definition and 

algorithm and details of computation method are discussed in the chapter 3.  

 

 

Figure 4. Medial Axis Transformation concepts and application in tool path planning 



www.manaraa.com

56 
 

 

3. Development of overall algorithm towards automated process planning 

 

For the overall algorithm process planning, it could be divided into several functional parts. 

For this paper, we are mainly discussing about adaptive medial axis transformation and its 

offsetting and discretization. After displaying the general algorithm (as shown in Fig. 5), two 

specific algorithm diagrams are picked up to show our design guidelines. 

 

Figure. 5 General algorithm development and diagram 
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3.1 Adaptive domain decomposition and offsetting  

 

Here, we only consider the cross section without holes, which is easily to be decomposed 

into several simple polygon domains.  

 

We call the lines between three-tangent-point circle center and endpoint, the sub-skeleton 

lines. Then, we also define the lines between three-tangent-point circle center and two-tangent-

point circle center, the skeleton lines type I. Lastly, the lines between two-tangent-points centers, 

are called the skeleton lines type II. The outside boundary curves are divided by those tangent 

points into boundary lines.  

 

For the next step, we could connect three-tangent-points with end points, and connect 

tangent points with their centers, in order to divide the overall domains into different parts. The 

following diagram is acting as the classification method to sort these different areas into 3 types.   
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Figure. 6. Decomposition definition and strategy 
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The offsetting strategy is based on area classification. For type I area (triangle ABb0), we 

could parallel offset the boundary lines. For the type II area (triangle T2b1b2), we could parallel 

offset the type II skeleton lines. For the type III area (trapezoid BCb1b0), the offsetting is not 

parallel, since the nature that, the type Iii area is always sharing the boundaries with type I and II 

areas, so we could connect the intersection points to form the adaptive non-parallel offsetting. 

This adaptive method could solve big disadvantage of MAT-based offsetting from internal 

skeleton to outside, that is, it will generate discontinuity in order to cover the whole area, as 

shown in the Fig 7. Below. 

 

 

Figure 7. Offsetting example and points selection example 

 

Additionally, due to the working conditions, we believe the outside points will bear more 

stress in plastic inject and demolding process, so we are using smaller effective distance to treat 

boundaries curves. For the internal points and points on the type I and II skeleton lines, we could 

use larger effective distance, in view of enhancing the processing efficiency. In this theory, any 

complex domain can be decomposed into these three fundamental shapes. 
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3.2 Discretization and spots point location selection 

 

From 3.1, we have already developed a method to generate adaptive equidistance offsetting 

curves. These curves has provided potential union for selecting spots welding point location. But 

here, we are still lacking two criteria to discrete (disperse) the points and determine the 

adding/removing points for the gaps between boundary curves and skeletons (MAT).  

 

For the first problem, we are here introducing a robust sampling algorithm, targeting at 

dispersing the achieved adaptive equidistant offsetting curves. There are three main methods for 

discrete sampling of plane curves: (1) Raster method, first rasterize the plane area where the 

curve is located, and then intersect the curve and grid lines as discrete sampling points. The 

resulting sampling points usually have a large amount of data, and the set of sampling points 

cannot reflect the local geometric characteristics of the curve well. 

 

(2) Predictive projection method, that is, from the point of the curve, according to the 

curvature of the curve at that point, along the tangent direction of the point forward a short 

section to get the forecast point, and then projected to the curve to get the sampling point. Since 

the method includes a projection process, the computational complexity is large; 

 

(3) ε -sampling method, the processing object is a plane closure curve, the sampling 

conditions are: set the curve point to the sampling point of the nearest distance d1, to the plane of 

the curve area surrounded by the nearest distance d2. If a sampling point set satisfies d1<ε × d2 at 

any point on the curve, it is the set of points, and ε is in the range 0 <ε <1. Since the method sets 
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the parameter ε, it is necessary to find the appropriate ε value for the different graphs to satisfy 

the sampling condition, so the set of sampling points is filled with uncertainty. In this paper, a 

sampling algorithm for simple plane closure curve is presented. 

 

 

Figure. 8 Schematic example of dispersion sampling algorithm 

 

The main steps of the sampling process: 

 

(1) Calculate the medial axis of the planar domain and complete the offsetting process as 

prescribed in 3.1 

(2) Pick up any point from the largest diagonal distance of boundary curve (offsetting curves) 

as the first point 

(3) Evenly sampling the curve with “effective distance”, and calculate the local feature size 

of each point, so-called local feature size refers to the nearest distance to the axis, as 

shown in Figure 8 (a), (b), (c).  

(4) If the distance is smaller than “effective distance”, the corresponding MAT point should 

be removed, means that the effect zone of boundary point is enough to cover the medial 

axis point.  
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(5) If the distance is larger than the effective distance, then put additional point at the middle 

point of distance (gap), then double check the new distance, to ensure the gap is smaller 

than effective distance 

      (6) Save all the points in a table, along with the slicing file as FSSW points 

 

Because of large manufacturing force and working loading during plastic injection process, 

we have ranked boundary points as the first priority to maintain. The MAT points and interior 

points are acting as secondary supporting strengthen points.  

 

4. Case study 

 

A case study has been conducted to verify the stress distribution of both the proposed and 

zig-zag process planning method via FEA. The FEA approach considered individual  layers and 

adhesive layers as solid elements, frictional interactions between laminations as contact elements, 

and aquadratic finite element mesh was applied.  To make the result persuasive, an intensive 

three-dimensional level mesh has been adapted, which is close to the actual working and 

manufacturing conditions. For this study, we are using two AA6061 aluminum plate (150 mm 

*100mm*6mm), with tensile yield strength of 276 MPa and shear strength 207 MPa. The FSSW 

tool diameter is 6.0 mm, with rotation speed at 1400 RPM and plug-in speed at 20 mm/min. 

When the algorithm from section3.2 was executed, the gap between MAT and boundary points is 

smaller than the effective distance, which is 48.3 mm based on aforementioned parameters. We 

intentionally ignored some boundary points, and only considered four endpoints on the corner to 

validate the efficiency of the proposed algorithm.  
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Then, stacked layers have been analyzed for horizontal and vertical stress distribution and 

deformation situations. It is notable that since the yield strength is the criteria for plastic 

deformation, and stress greater than the yield strength will result in irreversible deformation. We 

will consider this type of plastic deformation as a failure.  

 

From Figure9, we could easily see that even with fewer boundary points, the proposed 

structure has shown a strong resistance to vertical loading. Since vertical loading is mainly from 

the demolding process, any failure during this process would be a major concern. Admittedly, 

without defined support from boundary points, the shear stress from manufacturing stage would 

be difficult to resist, and that is also the reason we are using the boundary wall structure as the 

self-fixturing structure during the FSSW processing. Notably, even if the shear force from one 

horizontal side is large, shear forces of less than207 MPa for this study implies no plastic 

deformation occurs during the process.  

 

    

 

(a) Vertical load stress distribution 

 

 

(b) Vertical load deformation 



www.manaraa.com

64 
 

 

 

 

 

(c) Horizontal load stress distribution 

 

 

(d) Horizontal load deformation 

 

Figure. 9Deformation and stress distribution for MAT based process planning 

 

To make the result persuasive, a comparison of the traditional algorithms based on a zig-zag 

method is also presented.  The method is based on a grid layout of many pointsdistributed 

acrossthe board, with the effective zone overlapped. This method is a traditional spot welding 

patterning method with various applications. From Figure. 10, due to more heat influx and large 

plug-in forces, we could notice that there were some areas with plastic deformation at thecorners. 

When the horizontal load was applied, the plastic deformation region appeared at boundary 

curves near corners. We believe this phenomenon is due to the overlap of both the heat affected 

zone and mechanics effective zone, which leads tothe conclusion that a larger number of spot 

welds is not better; it could even cause some failures on the boundary and corners. 
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(a) Vertical load stress distribution 

 

(b) Vertical load deformation 

 

 

       (c) Horizontal load stress distribution   

     

         (d) Horizontal load deformation  

Figure. 10 Deformation and stress distribution for Zig-zag based process planning 

 

Table 1. Parameter and performance comparison between two methods 

Methods Zig-zag Method MAT Method 

 FSSW 

Spots 

First 12 7 

Second 12 6 

Shear stress (MPa) 8.6 8.9 

Tensile stress (MPa) 17.2 16.3 

Deflection(mm) 0.29 0.21 

 



www.manaraa.com

66 
 

 

From the comparison, regardless of the fact thatminor plastic deformation occurred, the 

MAT method with a lowernumber of FSSW spots can better satisfy the strength requirements 

comparedto the zig-zag method.Using 50% less spot welds shows that the MAT method is far 

more efficient and should be morecost effective.  

 

5. Conclusion  

 

In this paper, a fully automated process planning method with consideration of component 

strength requirement has been developed. Although the way to integrate strength and structural 

model is still in the preliminary stage, it shows the future direction, to consider the strength 

requirement locally and in the pre-manufacturing stage process. Additionally, by using medial 

axis transformation, a pure geometric method, we have successfully analyzed strength 

requirement layer by layer without using finite element analysis (FEA). Last but not least, the 

case studying has shown, even without much less spot number, the testing tensile strength is only 

13.7% less than previous continuous Friction Spot Welding (FSW) rapid manufacturing method 

and 9.7% less than Zig-Zag traditional planning method. Notably, the stress distribution has been 

optimized to a much better level comparing to previous two methods. The future works could be 

done in following areas: 1) What is the optimal sequence of these selected spots due to the large 

heat influx of Friction Stir Spot Welding (FSSW); 2) How could we combine light weight post 

manufacturing stress analysis (like modular analysis) solver with this pre-manufacturing 

algorithm, to provide some basic design guidelines? Because this could additionally put the 

computational load and reduce the process planning time. 
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APPENDIX: MEDIAL AXIS TRANSFORMATION CODE 

clear 

clc 

close all 

\\ read picture file binary 

% im=imread(‘input.jpg’); 

[filename,pathname,filter] = uigetfile({'*.jpg;*.jpeg;*.bmp;*.gif;*.png'}, ‘Selecting Pictures’); 

if filter == 0 

return 

end 

str = fullfile(pathname,filename); 

I=imread(str); 

im=I; 

\\ Getting the dimensions 

[M,N,C]=size(im); 

\\ Rotate grayscale 

if C>1 

I_gray=rgb2gray(im); 

else 

I_gray=im; 

End 

\\ Display 
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figure 

imshow(im) 

title(‘orginal picture’); 

\\ Display 

figure 

imshow(I_gray) 

title(‘Grayscale picture’); 

\\ Binary Conversion 

% I_bw=im2bw(I_gray,0.1); 

I_bw=im2bw(I_gray); 

I_bw=~I_bw; 

\\ Display 

figure 

imshow(I_bw); 

title(‘Binary Picture’); 

\\ Binary Medial Axis Transformation 

% I_bw=bwmorph(I_bw,'fill'); 

% PZ=bwareaopen(I_bw,5000); 

% figure(4) 

% imshow(PZ); 

% title(‘Remove irrelevant elements picture’); 
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PZ=I_bw; 

\\ Corrosion operation 

SE=ones(20); 

PZ=imerode(PZ,SE); 

PZ=imerode(PZ,SE); 

\\ Display 

figure 

imshow(PZ); 

title(‘Medial Axis Transformation Picture’); 

\\ Get the initial skeleton 

PZ=bwmorph(PZ,'skel',250); 

\\ Display 

figure 

imshow(PZ); 

title(‘initial skeleton’); 

PZ=bwmorph(PZ,'spur',5); 

\\ Display 

figure 

imshow(PZ); 

title(‘No spur’); 

\\ Save final binary skeleton 

imwrite(PZ, ‘Final skeleton’); 
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[row,col]=find(PZ); 

leg=length(row); 

for i=1:leg 

im(row(i),col(i),1)=255; 

im(row(i),col(i),2)=0; 

im(row(i),col(i),3)=0; 

end 

figure 

imshow(im); 

title(‘Result on original picture’); 
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